шjec
cbac

GCE MARKING SCHEME

SUMMER 2016

Mathematics - M1 0980/01

INTRODUCTION

This marking scheme was used by WJEC for the Summer 2016 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCE Mathematics - M1

Summer 2016 Mark Scheme

Q Solution
Mark
Notes

N2L applied man
$65 g-R=65 a$
$1^{\text {st }}$ stage, $a=3.2$
$R=65(9.8-3.2)$
$R=\underline{429(\mathrm{~N})}$
$2^{\text {nd }}$ stage, $a=0$
$R=65 \times 9.8$
$R=\underline{637(\mathrm{~N})}$
$3^{\text {rd }}$ stage, $a=-2.4$
$R=65(9.8+2.4)$
$R=\underline{793(\mathrm{~N})}$

M1 $\quad R$ and 65 g opposing. dim correct
A1

A1 cao

B1 cao

A1 cao

2(a) Apply N2L to B
$5 g-T=5 a$
Apply N2L to A
$T-2 g=2 a$
Adding
$5 g-2 g=7 a$
$a=4.2 \mathrm{~ms}^{-2}$
$T=\underline{28 \mathrm{~N}}$

2(b) Upwards positive
(i) Using $v=u+a t, u=0 . a=(\pm) 4.2, t=2$
$v=0+4.2 \times 2$
$v=\underline{8.4\left(\mathrm{~ms}^{-1}\right)}$
(ii) $\quad s=u t+0.5 a t^{2}, s=(\pm) 18.9, u=(\pm) 8.4, a=(\pm) 9.8$
$-18.9=8.4 t+0.5 \times-9.8 \times t^{2}$
$7 t^{2}-12 t-27=0$
$(7 t+9)(t-3)=0$
$t=\underline{3(\mathrm{~s})}$ A1
dim correct, all forces T and $2 g$ opposing
m1 one variable eliminated, Dep on both M's
A1 cao
A1 cao
dim correct, all forces
$5 g$ and T opposing

M1 cand's a
A1 $\mathrm{ft} a$
cand's v, one sign error $\mathrm{ft} v$
m 1 recognition of quadratic and attempt to solve

A1 cao

Q Solution
3(a) $\quad I=3 \times 4$

$$
=\underline{12(\mathrm{Ns})}
$$

3(b) Conservation of momentum
$3 \times 4+11 \times 0=3 v_{A}+11 v_{B}$ $3 v_{A}+11 v_{B}=12$

Restitution
M1
A1 correct equation, any form

Adding m1
$14 v_{B}=15$
$v_{B}=\frac{15}{14}\left(\mathrm{~ms}^{-1}\right)$

$$
v_{A}=\frac{1}{14}\left(\mathrm{~ms}^{-1}\right)
$$

$v_{A}=\frac{1}{14}\left(\mathrm{~ms}^{-1}\right)$

3(c) $\frac{6}{7}=e \times \frac{15}{14}$
$e=\frac{6}{7} \times \frac{14}{15}$
$e=\frac{4}{5}=\underline{0.8}$

Mark
Notes
$v_{B}-v_{A}=-\frac{1}{4}(0-4)$
$v_{B}-v_{A}=1$
$3 v_{A}+11 v_{B}=12$
$-3 v_{A}+3 v_{B}=3$

$$
1+v_{B}=1
$$

$$
v_{B}=\frac{15}{14}\left(\mathrm{~ms}^{-1}\right)
$$

A1 cao

A1 cao

M1 correct equation, any form

A1 $\quad \mathrm{ft} v_{B}$ if $>\frac{6}{7}$

Note: Accept g throughout conservation of momentum equation, whether crossed off or not.

Q Solution
Mark
Notes
4(a)

B1 $(0,30)$ to $(300,30)$
B1 $(300,30)$ to $(320,16)$
B1 $(320,16)$ to $(328,0)$
B1 shape, units, labels

4(b) Total distance $=$ area under graph
M1
$D=300 \times 30+0.5 \times(30+16) \times 20+0.5 \times 16 \times 8$
$D=9000+460+64$
$D=\underline{9524(\mathrm{~m})}$

B1
A1

A1
attempted
one correct area, ft graph all correct, ft graph if shape correct.
cao

Mark
Notes

Q Solution

5 Resolve in one direction
M1
$X=8 \cos 30^{\circ}+7 \cos 45^{\circ}$
$-15 \cos 60^{\circ}-12 \cos 50^{\circ}$
$X=-3.3355$
Resolve in perpendicular direction
$Y=8 \cos 60^{\circ}-7 \cos 45^{\circ}$
$-15 \cos 30^{\circ}+12 \cos 40^{\circ}$
$Y=-4.7476$
Resultant ${ }^{2}=3.3355^{2}+4.7476^{2}$
Resultant $=\underline{5.8 \mathrm{~N}}$
Acceleration $=\frac{5 \cdot 8021777}{4}$
Acceleration $=1.45\left(\mathrm{~ms}^{-2}\right)$
Resolve in one direction
$X=8 \cos 30^{\circ}+7 \cos 45^{\circ}$
$X=-15 \cos 60^{\circ}-12 \cos 50^{\circ}$
$X=-3.3555$

A1

M1

A1

5
m1 dep on both M's
A1 cao

A1 ft Resultant. Accept 1.5.

Q Solution
6.

Take moments about C
$8 g \times 1.4=T_{D} \times 3.2$
$T_{D}=\underline{3.5 \mathrm{~g}(\mathrm{~N})}=\underline{34.3(\mathrm{~N})}$

Resolve vertically
$T_{C}+T_{D}=8 g=78.4$
$T_{C}=\underline{4.5 \mathrm{~g}(\mathrm{~N})}=\underline{44.1(\mathrm{~N})}$

M1
M1 dim correct moment equ.
B1 Any correct moment
A1 correct equation
A1 cao
oe
A1
A1
cao

Note:
Simultaneous equations
First moment equation
Second moment equation or resolution equation
M1 B1 A1
M1 A1 (B1 if not
previously awarded)
Answers

Equal tension
$\begin{array}{ll}\text { Moments about C/D } & 4 \text { marks available } \\ \text { Moments about anywhere else } & 2 \text { marks available. }\end{array}$

7(a) Resolve perpendicular to plane
$R+80 \sin 10^{\circ}=12 g \cos 20^{\circ}$
$R=96.616$
$F=\mu R=0.2 \times 96.616$
$F=\underline{19.323(\mathrm{~N})}$

7(b) Resolve parallel to plane
$80 \cos 10^{\circ}-F-12 g \sin 20^{\circ}=12 a$ $a=\underline{1.6\left(\mathrm{~ms}^{-2}\right)}$

M1 dim correct equation All forces
No more than 1 sign error

M1 $\mathrm{ft} R$ (any correct form)
A1 cao

M1 dim correct equation All forces
Allow sin/cos errors Friction subtracted from tension
A2 -1 each error, (ft F)
A1 cao

Note (for both parts)

If no g with 12 ,
If 80 not resolved
M0 (possibly M1 for μR)

If g with 80

M0
M0
$8 \quad$ Use of $s=u t+0.5 a t^{2}$ with $s=460, t=20 \quad$ M1
$460=20 u+0.5 \times a \times 400$
$u+10 a=23$
Use of $v=u+a t$ with $t=6, v=17 \quad$ M1
$17=u+6 a \quad$ A1
$u+6 a=17$
attempt to solve simultaneously
m1 one variable remains
$4 a=6$
$a=\underline{1.5}$
A1 cao
$u=\underline{8}$
A1 cao

Note:
3 or more equations
First correct equation
M1 A1
All subsequent equations, eg 2 if 3 unknowns, 3 if 4 unknowns M1 A1
All variables except one eliminated m1
Correct answers

Alternative solution

	Area	$A C$	$A B$		
$A B C$-Circle	54-4 π	4	3	B1 B1	
D	12π	6	4.5	B1	
Lamina	(54+8 ${ }^{\text {) }}$	x	y	B1	expressions for areas, oe
Moments about $A C$				M1	consistent areas and moments
$(54-4 \pi) \times 4+12 \pi \times 6=(54+8 \pi) x$				A1	signs correct. Ft table if at least one B 1 for c of m gained.
$x=\underline{4.95(\mathrm{~cm})}$				A1	cao
Moments about $A B$				M1	consistent areas and moments
$(54-4 \pi) \times 3+12 \pi \times 4.5=(54+8 \pi) y$				A1	signs correct. Ft table if at least one B 1 for c of m gained.
$y=\underline{3.71(\mathrm{~cm})}$				A1	cao

